Journal of Medicinal Chemistry

The Discovery of Phthalazinone-Based Human H₁ and H₃ Single-Ligand Antagonists Suitable for Intranasal Administration for the Treatment of Allergic Rhinitis

Panayiotis A. Procopiou,^{*,†} Christopher Browning,[‡] Jennifer M. Buckley,[†] Kenneth L. Clark,[‡] Lise Fechner,[†] Paul M. Gore,[†] Ashley P. Hancock,[†] Simon T. Hodgson,[†] Duncan S. Holmes,[†] Michael Kranz,^{||} Brian E. Looker,[†] Karen M. L. Morriss,[†] Daniel L. Parton,[†] Linda J. Russell,[‡] Robert J. Slack,[‡] Steven L. Sollis,[†] Sadie Vile,[†] and Clarissa J. Watts[§]

⁺Departments of Medicinal Chemistry, [‡]Respiratory Biology, [§]Drug Metabolism and Pharmacokinetics, and ^{II}Cheminformatics, GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, United Kingdom

Supporting Information

ABSTRACT: A series of potent phthalazinone-based human H_1 and H_3 bivalent histamine receptor antagonists, suitable for intranasal administration for the potential treatment of allergic rhinitis, were identified. Blockade of H_3 receptors is thought to improve efficacy on nasal congestion, a symptom of allergic rhinitis that is currently not treated by current antihistamines. Two analogues (**56a** and **56b**) had slightly lower H_1 potency (pA₂ 9.1 and 8.9, respectively, vs 9.7 for the clinical gold-standard azelastine, and H_3 potency (pK_i 9.6 and 9.5, respec-

tively, vs 6.8 for azelastine). Compound **56a** had longer duration of action than azelastine, low brain penetration, and low oral bioavailability, which coupled with the predicted low clinical dose, should limit the potential of engaging CNS-related side-effects associated with H_1 or H_3 antagonism.

1. INTRODUCTION

Allergic rhinitis, also known as "hay fever," affects at least 10-25% of the world's population and has shown a steady increase in prevalence during the last 40 years.¹ The prevalence of allergic rhinitis may be significantly underestimated because of misdiagnosis, underdiagnosis, and failure of patients to seek medical attention. There are two types of allergic rhinitis, seasonal and perennial. The symptoms of seasonal allergic rhinitis include at the early stage nasal itching, irritation, and sneezing and at the late stage rhinorrhea and nasal congestion. The symptoms of perennial allergic rhinitis are similar, however, nasal congestion may be more pronounced. Either type of allergic rhinitis may also cause other symptoms such as irritation of the throat and/ or eyes, epiphora, and edema around the eyes.² In addition to the classical symptoms, it is now recognized that allergic rhinitis has a significant impact on quality of life, such as social life, sleep disturbance as a result of nasal congestion, which in turn leads to reduced performance at work and school.³ Allergic rhinitis and other allergic conditions are associated with the release of histamine from various cell types, but particularly mast cells.

The physiological effects of histamine are mediated by four major G-protein-coupled receptors, termed H₁, H₂, H₃, and H₄, which differ in their expression, signal transduction, and histamine-binding characteristics.⁴ H₁ receptors are widely distributed

throughout the CNS and periphery and play a critical role in regulating inflammatory responses and CNS activity such as wakefulness. H1 antagonists, also known as H1 blockers or antihistamines, are the most commonly used first-line medications for allergic rhinitis.^{5,6} H₂ receptors regulate gastric acid secretion, and H₂ antagonists are used clinically to treat excess acid production and gastric ulceration.⁷ The third histamine receptor subtype (H_3) is a presynaptic autoreceptor that controls the synthesis and release of histamine as well as other neurotransmitters such as acetylcholine, dopamine, GABA, glutamate, 5-HT, and noradrenaline.⁸ Consequently, many applications have been proposed for H₃ receptor ligands, particularly in the CNS, where centrally acting H₃ antagonists may provide novel therapies for neurological disorders such as epilepsy, Parkinson's disease, Alzheimer's disease, attention-deficit hyperactivity disorder, sleep disturbances, cognition, schizophrenia, and obesity.9-11 The more recently identified fourth receptor subtype (H_4) appears to be restricted to cells of the immune and inflammatory systems, and a physiological role for this receptor remains to be identified.¹²

First-generation H_1 receptor antagonists, while effective, caused sedation attributed to their ability to blockade H_1 receptors

Received:October 25, 2010Published:March 07, 2011

Chart 1. Representative H₁ Receptor Antagonists Used Clinically

Chart 2. Phthalazinone Template

in the CNS. Second-generation H1 receptor antagonists were developed with reduced CNS penetration and a corresponding reduction in the sedative side effects. Oral second-generation H₁ receptor antagonists such as cetirizine, desloratadine, fexofenadine, loratadine, and levocetirizine (Chart 1)¹³ are effective in treating all the symptoms of allergic rhinitis apart from the nasal congestion. Hence they are often used in combination with α-adrenergic agonist decongestants such as pseudoephedrine. However, the use of α -adrenergic agonists is limited due to their potential to produce hypertension, agitation, and insomnia. In addition to the oral antihistamines, there are topical treatments available, such as azelastine nasal spray, which has been shown to benefit patients who have not responded adequately to loratadine and fexofenadine and is significantly more efficacious than cetirizine and levocabastine in patients with seasonal allergic rhinitis.^{14,15}

Histamine H₃ receptors are expressed widely on both CNS and peripheral nerve endings and mediate the inhibition of neurotransmitter release.^{8,16} Activation of H₃ receptor by histamine modulates outflow to resistance and capacitance vessels, causing vasodilation in rats,¹⁷ guinea pigs,¹⁸ and cats.¹⁹ In vitro electrical stimulation of peripheral sympathetic nerves in isolated human saphenous vein^{20,21} and porcine nasal mucosa²² results in an increase in noradrenaline release and smooth muscle contraction, which can be inhibited by histamine H₃ receptor agonists such as (*R*)- α -methylhistamine. In addition, activation of H₃ receptors in isolated human nasal turbinate mucosa inhibits sympathetic vasoconstriction.²³ The same report also described high distribution of H₃ receptors in the human nasal mucosa. It is

^{*a*} Reagents and conditions: (a) NaH, DMF, 69%; (b) hydrazine hydrate, EtOH, reflux, 78%; (c) HCHO, HCO₂H, 100 °C, 55%.

Scheme 2^{*a*}

 a Reagents and conditions: (a) 1, NaH, DMF, 100%; (b) 4 M HCl-dioxane, 93%; (c) HCHO, HCO_2H, 100 $^\circ$ C, 90%.

thought that activation of the H₃ receptor on the presynaptic terminals of sympathetic neurones reduces noradrenaline release and this may contribute, together with the activation of the postsynaptic H₁ receptors, to the nasal blockage caused by histamine release. Consistent with this hypothesis, combination treatment of H1 and H3 antagonists have been shown to reverse the effects of mast cell activation on nasal airway resistance and nasal cavity volume in a cat model of nasal congestion in vivo. $^{24-26}$ Further evidence for the contribution of H₃ receptors to histamine-induced blockage of the nasal airway in normal healthy human volunteers was provided recently by acoustic rhinometry.²⁷ Scientists at the Schering-Plough Research Institute have published the first dual H1H3 receptor antagonist based on the first-generation H1 antagonist chlorpheniramine and a 4-substituted imidazole with $H_1 K_i = 7 \text{ nM}$ and $H_3 K_i = 15 \text{ nM}$.²⁸ In principle, there are two ways of targeting dual H1H3 pharmacology, either by using a combination of two individual selective antagonists or identifying a molecule that exhibits antagonism at both receptors. The former approach is easier to achieve but more expensive, as it requires the development and progression through expensive clinical trials of two chemical entities. We have examined both strategies, and in a recent paper we have reported our efforts in identifying a novel, nonbrain-penetrant histamine

^{*a*} Reagents and conditions: (a) diisopropyl azodicarboxylate, triphenylphosphine, THF, 80%; (b) 4 M HCl in dioxane, 90%; (c) HCHO, HCO₂H, reflux, 85%.

 $\rm H_3$ selective antagonist with optimized pharmacokinetic properties suitable for oral administration.²⁹ In this paper, we are reporting our efforts in identifying an $\rm H_1H_3$ dual antagonist suitable for intranasal administration for the potential treatment of allergic rhinitis. Our efforts to identify an $\rm H_1H_3$ dual antagonist suitable for oral administration will be reported in due course.³⁰

2. OPTIMIZATION OF H₁ ANTAGONISM

Azelastine (Chart 1), a second-generation antihistamine, originally developed for oral administration but now also marketed for topical administration, is available as a racemic mixture. It is about 10 times more potent than the first-generation H_1 antagonist chlorpheniramine³¹ and is oxidatively metabolized to an active metabolite, desmethylazelastine. Adverse effects of azelastine nasal spray include bitter taste (20%), somnolence (11%), and nasal burning (4%).^{14,15} Azelastine was resolved, and the potency of its enantiomers was reported to be the same as that of the racemic mixture,³² however, there are no reports associating the adverse effects of azelastine with one of its enantiomers. We established that the H₃ antagonism in dual H1H3 antagonists is tolerant to a range of structural modifications, whereas the H₁ antagonism is much more sensitive to variations. For this reason, we were interested in finding more potent homochiral phthalazinone analogues containing N2 substituents other than the azepine found in azelastine. Although the replacement of azelastine's azepine group with a 2-pyrrolidinomethyl group was reported to have led to increased in vivo activity in guinea pigs,³³ the effect of this group and that of its individual enantiomers on human cell lines was not reported. It was therefore decided to synthesize a variety of phthalazinone analogues with different N2-substituents in order to optimize the H₁ potency and then further optimize the phthalazinone C4 substituent before attempting the investigation of dual H1H3 antagonists (Chart 2).

2.1. Chemistry. The phthalazinone core $(1)^{34}$ was alkylated with *N*-(2-bromoethyl)phthalimide (2) in the presence of sodium hydride in DMF to give 3, followed by deprotection with hydrazine hydrate to give 4 and Eschweiler-Clarke alkylation to provide the required dimethylaminoethyl derivative 5^{35} (Scheme 1). The homologous *N*,*N*-dimethylaminopropyl derivative 6 was prepared in a similar way from 1 and 3-[(*tert*- Scheme 4^{*a*}

^{*a*} Reagent and conditions: (a) (\pm) -(1-methyl-3-pyrrolidinyl)methanol (17), diisopropyl azodicarboxylate, PPh₃, THF.

butoxycarbonyl)amino]propyl bromide (7), followed by deprotection of **8** to give **9** and Eschweiler–Clarke dimethylation (Scheme 2).

The 2-pyrrolidinomethyl enantiomers 10a and 11a were synthesized from 1 and the appropriate Boc-protected prolinol using Mitsunobu conditions as shown in Scheme 3. The Mitsunobu condensation of **1** with (S)-(-)-2-(hydroxymethyl)-1-methylpyrrolidine was reported to give a mixture of the expected product and a rearrangement product due to formation of an aziridinium intermediate, which then ring-expanded.³⁶ Because this was due to the nucleophilicity of the pyrrolidine nitrogen, we envisaged using the Boc-protected prolinols, where the nucleophilicity of the nitrogen is reduced by the butoxycarbonyl group. The Mitsunobu couplings proceeded under these modified conditions in high yields and without any rearrangement to give 12 and 13, respectively. Cleavage of the Boc protecting group with hydrogen chloride in dioxane gave the secondary amines 14 and 15, and finally Eschweiler-Clarke methylation gave tertiary amines 10a and 11a.

The regioisomeric 3-pyrrolidinomethyl analogue **16** was prepared by Mitsunobu alkylation of **1** with (1-methyl-3-pyrrolidinyl)

Scheme 5^{*a*}

^a Reagents and conditions: (a) allylamine, 87 °C, 60%; (b) BOC₂O, Et₃N, DCM, 91%; (c) Grubb's I catalyst, DCM, 40%; (d) H₂, PtO₂, EtOH, 100%; (e) 1, di-*tert*-butyl azodicarboxylate, PPh₃, THF, 99%; (f) TFA, DCM, 82%; (g) HCHO, HCO₂H, 80 °C, 54%.

D _		D _	
K –		K –	
a	4-Cl-C ₆ H ₄ CH ₂ -	j	3-F-C ₆ H ₄ CH ₂ -
b	4-MeO-C ₆ H ₄ CH ₂ -	k	3-Cl-C ₆ H ₄ CH ₂ -
с	4-HO-C ₆ H ₄ CH ₂ -	1	3-MeO-C ₆ H ₄ CH ₂ -
d	4-EtO-C ₆ H ₄ CH ₂ -	m	3-Me-C ₆ H ₄ CH ₂ -
e	4-F-C ₆ H ₄ CH ₂ -	n	3,4-F-C ₆ H ₄ CH ₂ -
f	4-Me-C ₆ H ₄ CH ₂ -	0	3,4-MeO-C ₆ H ₄ CH ₂ -
g	4-t-Bu-C ₆ H ₄ CH ₂ -	р	c-C ₆ H ₁₁ CH ₂ -
h	4-MeO ₂ C-C ₆ H ₄ CH ₂ -	q	C ₆ H ₅ CH ₂ CH ₂ -
i	4-HO ₂ C-C ₆ H ₄ CH ₂ -	r	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ -

Table 1. Phthalazinone C4-Substituents

methanol (17) without any rearrangements occurring, whereas the piperidine 18^{33} and pyrrolidinoethyl derivative 19^{34} were synthesized according to published procedures (Scheme 4).

The azelastine regioisomer **20** was prepared by the route outlined in Scheme 5. Chlorohydrine 21^{37} was heated in excess allyl amine to give **22**, which was converted to the Boc-protected amine **23**. Ring-closing metathesis of **23** with Grubbs I catalyst furnished the 5,6-olefin **24** as the major product, accompanied by the regioisomeric 6,7-olefin. Hydrogenation of **24** (and its regioisomer) provided **25**, which was then coupled to **1** using the Mitsunobu reaction. The resulting phthalazinone **26** was deprotected to azepine **27** and then reductively methylated to azelastine regioisomer **20**.

The C4-phthalazinone substituents (Table 1) were introduced in two ways. The first route was a linear route and is outlined in Scheme 6. Reaction between phthalic anhydride (28) and 4-methoxyphenylacetic acid (29) in the presence of sodium acetate gave 30, which was treated with hydrazine to provide the phthalazinone 31. Alkylation with N-Boc-D-prolinol using Mitsunobu conditions gave 32, which was deprotected with TFA to 33 and then converted to the N-methyl derivative 10b using Eschweiler—Clarke conditions. Reaction of 10b with boron tribromide gave phenol 10c, which was converted to the ethyl ether 10d using the Mitsunobu reaction (Scheme 6).

The second route (Scheme 7) was a much more versatile route, suitable for array chemistry and allowing late-stage derivatization at C4. It started from the commercially available 4-chloro-1(2H)-phthalazinone (34), which was alkylated with *N*-Boc-D-prolinol

under Mitsunobu conditions to provide **35**. Deprotection under acidic conditions provided **36**, which was then converted to the key intermediate **37** by Eschweiler—Clarke methylation. The required products **10** were obtained in one simple step by Negishi coupling, following treatment with a variety of organozinc reagents.

2.2. Results and Discussion. The affinity of compounds was evaluated in vitro at recombinant human histamine H1 receptor in intact CHO cells by means of plate-based calcium imaging. Inhibition of agonist-induced cellular calcium mobilization was monitored using the calcium sensing dye Fluo-4AM in a FLIPR instrument.³⁸ The compounds were also evaluated in membranes from CHO cells transfected with cloned human histamine H₃ receptors for their ability to reduce histamine stimulated GTP- γ -S binding as determined by scintillation proximity detection. The adrenergic α_{1A} and α_{1B} receptor affinity of the test compounds was assessed in intact Ratl fibroblast cells by means of plate-based calcium imaging, and the data from all the above screens are summarized in Table 2. Azelastine was used as a standard, with affinities (pK_i) for H₁ and H₃ 8.9 and 6.8, respectively. The effect of the phthalazinone N2-basic amino group substituent (azepine, piperidine, pyrrolidine, or alkyl chain) was first examined, and the groups that had affinities for the H₁ receptor higher than that of azelastine were the two enantiomers of 2-pyrrolidinomethyl derivatives (10a and 11a) and the simple $N_{,N}$ -dimethylaminoethyl derivative (5). It was apparent that a two-carbon chain between the point of attachment on the phthalazinone to the basic nitrogen (5, 10) were preferred over the three-carbon analogues (6, 16, 19), whereas the piperidino analogue (18), being of intermediate length, showed similar affinity to azelastine. This is rationalized by comparing azelastine's binding in the H₁ homology model. This model was based on the bovine rhodopsin structure and was constructed well before the recently published X-ray crystal structures of a number of 7TM receptors. The basic nitrogen of azelastine was tethered to Asp-107 of the TM3,³⁹ allowing the bulk of the ligand to extend into the large pocket formed by TM3, TM4, TM5, and TM6 (Figure 1). Two Tyr side-chains from the opposing TM3 and TM6 were observed to interact with each other, thereby forming a channel between the ligand binding pocket and Asp-107. Both Tyr hydroxyl groups can form hydrogen bonds to the phthalazinone carbonyl in some of the low-energy conformations. The chlorobenzyl group reached between three aromatic rings of TM5 and TM6, thereby blocking

Scheme 6^a

^{*a*} Reagents and conditions: (a) NaOAc, 240 °C, 75%; (b) hydrazine sulfate, NaOH, EtOH, 95 °C, 91%; (c) N-Boc-D-prolinol, PPh₃, di-*tert*-butyl azodicarboxylate, THF, 91%; (d) TFA, DCM, 100%; (e) HCHO, HCO₂H, 95 °C, 80%; (f) BBr₃, DCM, 5 °C, 88%; (g) EtOH, PPh₃, di-*tert*-butyl azodicarboxylate, THF, 20 °C, 40%.

Scheme 7^a

^a Reagents and conditions: (a) N-Boc-D-prolinol, PPh₃, di-*tert*-butyl azodicarboxylate, THF, 100%; (b) 4 M HCl in dioxane, 66%; (c) HCHO, HCO₂H, 80 °C, 82%; (d) organozinc chloride or bromide, Pd[(PPh₃)]₄, THF, 80 °C.

the Trp residue in TM6 implied in the 7TM agonist state.⁴⁰ The edge of the phthalazinone core phenyl ring coordinated to the backbone of TM5. The effect of larger groups between the phthalazinone N2 group and the basic group was to push the phthalazinone nucleus onto the backbone of TM5, however, the combination of a flexible linker and a smaller heterocycle in the pyrrolidinomethyl analogues, relative to the azepine in azelastine, allowed for the phthalazinone moiety to adopt an orientation almost identical to that of azelastine (Figure 1).

The regioisomer **20** of azelastine had lower H_1 affinity than azelastine, and this is presumed to be due to its rigid structure, which after binding of the basic nitrogen to Asp-107 forces the phthalazinone core in an unfavorable orientation. Because the *R* enantiomer of the 2-pyrrolidinomethyl analogue (**10a**) had the highest H_1 affinity (9.8), this analogue was chosen for the optimization of the phthalazinone C4 substituent. Preferred substituents at C4 were found to be the 4-chloro- (**10a**),

4-methoxy- (10b), 4-hydroxy- (10c), 4-methyl- (10f), and 4-fluoro-benzyl (10e) analogues. Bulky substituents at the para-position of the C4-benzyl substituent, such as tert-butyl-(10g), methyl ester (10h), ethyl ether (10d), and ionic groups, such as carboxylic acid (10i), were not well tolerated. Alkyl substituents, such as cyclohexylmethyl (10p), phenethyl (10q), and pentyl (10r) had affinities much lower than that of a substituted benzyl group. The meta-substituted benzyl analogues of the highest affinity antagonists, such as the chloro-(10k), methyl- (10m), and methoxy- (10l), had lower affinity than the corresponding para analogues, whereas the metafluoro (10j) analogue had only slightly lower affinity. Two 3,4disubstituted analogues were prepared, of which the dimethoxy analogue (100) showed much reduced affinity, whereas the 3.4-difluoro analogue (10n) had affinity similar to that of the 4-fluoro analogue (10e), indicating that there is only limited space available in the pocket in which the benzyl substituent

Table 2. Antagonist Affinity^{*a*} of Target Compounds at the Human H₁ Receptor (Determined by Fluorescence Imaging Plate Reader), Human H₃ Receptor (Determined by a Functional GTP γ [S]-Assay), and Affinity at the Human α_{1A} , and α_{1B} Receptors

compd	$H_{1} pK_{i} \left(n \right)$	$H_{3} pK_{i} \left(n\right)$	$\alpha_{1A} p K_i(n)$	$\alpha_{1B} p K_i(n)$					
azelastine	$8.9 \pm 0.0 (364)$	$6.8 \pm 0.0 (56)$	$7.3 \pm 0.0 (145)$	$7.3 \pm 0.0 (97)$					
5	9.6 ± 0.1 (8)	<6.3 (7)	$6.8 \pm 0.2 (3)$	$6.7 \pm 0.0 (3)$					
6	8.0 ± 0.1 (6)	$6.9 \pm 0.1 \; (4)$	$6.5 \pm 0.1 \ (3)$	$6.5 \pm 0.1 (3)$					
10a	$9.8 \pm 0.1 \; (10)$	$6.4 \pm 0.0 (2)$	$7.6 \pm 0.1 \; (12)$	$7.9 \pm 0.2 \ (9)$					
10b	$10.0 \pm 0.0 \ (8)$	$7.1 \pm 0.0 (2)$	$6.9 \pm 0.1 \; (4)$	$6.8 \pm 0.2 \ (4)$					
10c	$9.8 \pm 0.1 \ (8)$	$6.6 \pm 0.1 \; (4)$	$6.6 \pm 0.2 (3)$	6.4 ± 0.1 (3)					
10d	8.3 ± 0.2 (6)	$6.5 \pm 0.2 (2)$	6.1 (1)	<5.7 (3)					
10e	$9.5\pm 0.1\;(10)$	<6.3 (8)	$7.2 \pm 0.2 \; (4)$	$7.1 \pm 0.2 (4)$					
10f	$9.7 \pm 0.1 \; (4)$	<6.2 (5)	$8.0 \pm 0.3 \ (3)$	$7.8 \pm 0.1 \; (3)$					
10g	6.4 ± 0.0 (6)	<6.2 (6)	<5.7 (3)	<5.7 (3)					
10h	$6.2 \pm 0.1 \ (6)$	<6.2 (4)	<5.7 (2)	<5.7 (3)					
10i	<5.8 (6)	<6.2 (6)	<5.7 (3)	<5.7 (3)					
10j	9.3 ± 0.0 (6)	6.7 ± 0.0 (6)	$7.3 \pm 0.3 (4)$	6.4 ± 0.1 (4)					
10k	$8.8 \pm 0.1 \ (6)$	<6.2 (5)	$6.4 \pm 0.2 (5)$	$6.2 \pm 0.3 \ (2)$					
10l	$8.7 \pm 0.1 (7)$	6.2 (1)	$5.8 \pm 0.1 (2)$	<5.7 (4)					
10m	9.1 ± 0.0 (6)	$6.6 \pm 0.1 (5)$	$6.3 \pm 0.1 (3)$	$6.3 \pm 0.1 (3)$					
10n	$9.6 \pm 0.1 \ (6)$	<6.2 (6)	$6.7 \pm 0.1 (3)$	$6.5 \pm 0.1 \ (3)$					
10o	$5.8 \pm 0.0 (3)$	<6.2 (10)	<5.7 (5)	<5.7 (5)					
10p	7.1 ± 0.0 (6)	6.7 (1)	<5.7 (3)	<5.7 (3)					
10q	$7.5 \pm 0.0 \ (2)$	<5.5 (2)	6.7 (1)	6.7 (1)					
10r	$8.8 \pm 0.1 \ (20)$	<6.2 (6)	$6.3 \pm 0.1 (3)$	6.0 ± 0.1 (2)					
11	$9.5 \pm 0.1 \ (10)$	<6.4 (6)	$7.4 \pm 0.2 \; (10)$	$7.7 \pm 0.2 \ (9)$					
16	$8.2 \pm 0.1 \ (8)$	<6.4 (8)	7.0 ± 0.1 (6)	7.1 ± 0.1 (6)					
18	$9.0 \pm 0.2 \ (10)$	$6.9 \pm 0.1 (7)$	7.8 ± 0.1 (6)	8.2 ± 0.3 (6)					
19	$7.2 \pm 0.1 \ (18)$	$7.1 \pm 0.2 (5)$	$6.5 \pm 0.1 (5)$	6.5 (1)					
20	8.6 ± 0.0 (4)	<6.2 (4)	$6.8 \pm 0.2 (2)$	$6.8 \pm 0.1 (2)$					
38	$7.3 \pm 0.1 \ (8)$	$9.3 \pm 0.1 \ (8)$	$7.0 \pm 0.1 (10)$	6.9 ± 0.1 (7)					
39	$7.8 \pm 0.1 \ (6)$	8.4 ± 0.1 (2)	$7.5 \pm 0.1 (3)$	$7.5 \pm 0.2 (3)$					
40	$7.8 \pm 0.1 (4)$	$9.6 \pm 0.1 (4)$	$6.9 \pm 0.2 (2)$	$7.1 \pm 0.1 (2)$					
41	$7.7 \pm 0.1 (13)$	$8.7 \pm 0.2 \ (8)$	$6.8 \pm 0.1 \ (10)$	7.0 ± 0.1 (8)					
54	7.4 ± 0.0 (6)	9.4 ± 0.1 (6)	6.5 ± 0.1 (4)	$6.5 \pm 0.2 (3)$					
55	7.4 ± 0.1 (4)	8.1 ± 0.1 (4)	5.8 (1)	<5.7 (2)					
56a	$8.0 \pm 0.1 (36)$	$9.6 \pm 0.0 (33)$	$7.4 \pm 0.0 (17)$	$7.5 \pm 0.1 (14)$					
56b	$8.1 \pm 0.1 \ (8)$	9.5 ± 0.0 (8)	$7.2 \pm 0.1 (5)$	$7.3 \pm 0.1 (5)$					
56c	$7.9 \pm 0.1 \ (8)$	9.4 ± 0.1 (6)	$7.0 \pm 0.0 (3)$	$6.9 \pm 0.0 (3)$					
57	$7.9 \pm 0.1 \ (6)$	9.4 ± 0.0 (6)	$7.6 \pm 0.2 (3)$	7.3 ± 0.1 (4)					
58	7.6 ± 0.1 (6)	9.6 ± 0.1 (6)	$7.5 \pm 0.2 (3)$	$7.4 \pm 0.0 (3)$					
Mean \pm SEM (where applicable) of estimated functional p K_i . For $n < 3$									
SEM is the SD. $n = number of experiments.$									

binds. The highest affinity analogues 10a-c, 10e, and 10f were also found to be selective for H₁ against H₃, α_{1A} and α_{1B} , however, 10f had reduced selectivity against α_{1A} and α_{1B} .

3. DUAL H1H3 ANTAGONISM

Having established the optimal C4 and N2 phthalazinone substituents for maximal antagonism at the human H_1 receptor, attention was focused on identifying dual human H_1H_3 antagonism in a single ligand. Examination of the H_1 homology model indicated the existence of a narrow channel between TM2, TM3, TM6, and TM7, extending parallel to the helix axes deeper into the 7TM bundle, which may be reached from the basic center of azelastine (Figure 1). From our preliminary investigations with azelastine analogues, it was found that high H_1 antagonism was retained with a large number of substituents on its basic nitrogen. It was envisioned that introduction of fragments associated with H_3 antagonism, such as a phenoxypropylamino group, would bring about dual H_1H_3 antagonism (Chart 3).

It was necessary to investigate first the optimal chain-length of the linker group between azelastine's basic nitrogen and the point ARTICLE

Figure 1. (A) One of the low energy conformations of azelastine docked into the homology model of H1. (B) Overlay of the docked poses of azelastine (green) and 11a.

Chart 3. Strategy for Dual $H_1 H_3$ Antagonism on a Single Ligand

of attachment of the H_3 fragment. Furthermore, our early investigations with a nonphthalazinone H_1 fragment indicated that the human H_1 antagonism of dual H_1H_3 antagonists was found to be very sensitive to the amino group of the H_3 fragment. For this reason, the homopiperidinopropyloxyphenyl group, which was found to be one of the higher affinity H_3 fragments in our ketopiperazine selective H_3 antagonists,²⁹ was chosen for attachment onto the basic nitrogen of the optimized H_1 phthalazinones **10a**-**c** and **5** identified above.

3.1. Chemistry. A series of azelastine derivatives $38-41^{41}$ incorporating a linker group consisting of one to four methylenes to the H₃ fragment was prepared by alkylation of des-methyl azelastine (42) and an appropriate electrophile, such as 43 (Chart 4). The mesylate 43 was prepared by the method outlined in Scheme 8. Thus, reaction of 4-iodophenol (45) with 1-bromo-3-chloropropane gave chloride 46, which was treated with hexamethyleneimine to provide amine 47. Sonogashira coupling of 47 with 3-butyn-1-ol yielded 48, which was converted to the alcohol 49 by catalytic hydrogenation and then treated with methanesulfonyl chloride to give the mesylate 43.

The homologue of 43, mesylate 44, was prepared by the method outlined in Scheme 9. Thus, Mitsunobu alkylation of phenol 50^{42} with alcohol 51^{43} provided 52, which was reduced with lithium aluminum hydride to give alcohol 53 and, in turn, converted to mesylate 44. Alkylating agents 43 and 44 were found to deteriorate with time at room temperature, so they were stored at -20 °C or made freshly before use.

Alkylation of 4 with mesylate 43 gave 54, which was then converted to the tertiary amine 55 by Eschweiler—Clarke alkylation (Scheme 10).

Chart 4. Variation of the Linking Group between the H₁ and H₃ Fragments ^a

^aReagents and conditions: (a) Alkyl mesylate, NaHCO₃, MeCN, reflux.

Scheme 8^{*a*}

^{*a*} Reagents and conditions: (a) 1-bromo-3-chloropropane, K₂CO₃, 2-butanone, reflux, 84%; (b) hexamethyleneimine, NaI, 2-butanone, 80 °C, 83%; (c) 3-butyn-1-ol, Et₃N, (PPh₃)₂PdCl₂, CuI, THF, 20 °C, 77%; (d) H₂, 10% Pd/C, HCl, EtOH, MeOH, 88%; (e) MsCl, iPr₂NEt, DCM, 20 °C, 94%.

Scheme 9^a

^a Reagents and conditions: (a) PPh₃, di-*tert*-butyl azodicaroxylate, THF, 69%; (b) LiAlH₄, THF, 68%; (c) MsCl, iPr₂NEt, DCM, 20 °C, 100%.

The chloro- and methoxy- analogues (56a and 56b, respectively) were prepared by alkylation of the appropriate amine (14 and 33, respectively) with the mesylate 43, whereas the hydroxy- analogue (56c) was prepared from 56b by treatment with boron tribromide. The homologue of 56a (57) was prepared by reacting 14 with mesylate 44 (Scheme 11).

A second, nonconvergent route was used for the synthesis of 56a and its enantiomer 58. This route, outlined in Scheme 12, was not suitable for array chemistry, however, it was more suitable for larger scale work. All the intermediates in this route (59-63) were either neutral or monobasic compounds and therefore more readily purified by chromatography than dibasic compounds.

3.2. Results and Discussion. The first dibasic, bivalent ligands to be tested were the analogues bearing the azelastine H_1 azepine

group linked to the H₃ fragment with an alkyl-chain linker of one to four methylenes (compounds 38-41) in order to determine the chain-length requirement for the linker. In the H₁ homology model, the H₃ fragment of the bivalent ligands could be threaded into a narrow channel between TM2, TM3, TM6, and TM7. While the longer-chain analogues fit well into the available space, molecule 38 additionally formed an H-bond with the Asp-73 side chain in TM2 (Figure 2). The compounds were not docked into the H₃ homology model where this narrow channel also existed, albeit with a different shape. The qualitative modeling results were confirmed by the low nanomolar affinity of 38-41 at the H₃ receptor and high nanomolar affinity at H₁. However, the shorter-chain analogue (38) was less active than the longer analogues, which means that the additional H bond to Asp-73

Scheme 10^a

^a Reagents and conditions: (a) 43, NaHCO₃, MeCN, reflux, 21%; (b) HCHO, HCO₂H, 100 °C, 66%.

Scheme 11^a

^a Reagents and conditions: (a) 43, NaHCO₃, MeCN, reflux, 35%; (b) BBr₃, DCM, 5 °C, 14%; (c) 44, NaHCO₃, MeCN, reflux, 21%.

was either not formed or the H₁ homology model did not reflect the observed SAR.

Compounds 38 and 40 were more potent at H₃ (about 100fold) and were not progressed; the data is shown in Table 2. Compounds 39 and 41 had a more acceptable difference of about 10-fold, however, 41 was more selective than 39 for H₁ over α_{1A} and α_{1B} , hence the four methyl linker was chosen for optimizing the H₁ fragment. Analogues 54 and 55, bearing flexible chain linkers, had greatly reduced H₁ affinity by comparison to the monovalent ligand 5 (Table 2) and were therefore not progressed. The analogues 56a-c and 57 had high H₃-receptor affinity (p K_i values between 9.4 and 9.6), which is almost 3 orders of magnitude greater than azelastine (H₃ p K_i 6.8). However, their H₁-receptor functional p K_i values were about 8, which represented a drop of 2 orders of magnitude by comparison with their monovalent analogues. Despite the reduction in H₁-receptor affinity, compounds 56a-c and 57 are to our knowledge among the most potent bivalent H₁H₃ antagonists known.²⁸ The *R*-enantiomer 56a had greater H₁ affinity than the *S*-isomer 58, as was the case with the monovalent analogues (cf 10a with 11). Scheme 12^{*a*}

^{*a*} Reagents and conditions: (a) MsCl, Et₃N, Et₂O, 0 °C, 100%; (b) 14, K₂CO₃, 2-butanone, reflux, 24 h, 60%; (c) BBr₃, DCM, -60 °C, 93%; (d) 1-bromo-3-chloropropane, K₂CO₃, 2-butanone, reflux, 18 h, 85%; (e) hexamethyleneimine, KI, K₂CO₃, 2-butanone, reflux, 41 h, 48%.

Figure 2. One of the low-energy conformations of the extended azelastine ligand 40 docked into the homology model of H₁.

In addition to the assays reported in Section 2.2, a more precise, lower throughput, modified version of the human H1 FLIPR assay was run, which provided apparent pA_2 values. Antagonist pA_2 values were determined by generating histamine concentrationresponse curves either in the absence or presence of a single concentration of antagonist (100 nM) at 30 min incubation. The histamine concentration-response curves were analyzed using a four-parameter logistic equation to determine the midpoint (EC_{50}) of the curve. Antagonist pA_2 values were calculated using the equation $pA_2 = \log(DR - 1) - \log[B]$ where DR, the dose ratio, is the EC_{50} in the presence of antagonist divided by the EC_{50} for the control curve, and [B] is the molar concentration of the antagonist tested. The data for dual antagonists 56a-c and 57 are summarized in Table 3 and compared to azelastine. Compound 56a was the most potent H_1 antagonist (pA₂ 9.1). Duration of action in vitro was determined in the FLIPR assay by incubation of adherent CHO cells with antagonist for 30 min, followed by washing, and then by repeat histamine challenges at intervals of 90 and 270 min at 37 °C. Agonist dose ratios were converted to receptor occupancies, which were plotted against time. A measure of duration was obtained from the gradient of the percent receptor occupancy

Table 3. Antagonist pA_2 Affinity of 56a-c and 57 at the Human H₁ Receptor, Determined by Fluorescence Imaging Plate Reader and in Vitro Duration

compd	$pA_2 \pm SEM^a$	п	wash-out					
56a	9.1 ± 0.1	11	slower					
56b	8.9 ± 0.1	10	slower					
56c	8.4 ± 0.1	8	slower					
57	8.9 ± 0.1	6	no difference					
azelastine	9.7 ± 0.1	19	reference					
a All pA ₂ values taken from curve shifts generated at 30 min incubation								
time and with 100 nM antagonist.								

versus time plot. Results were statistically analyzed and related to azelastine in the same assay and expressed as slower, no-difference, or faster wash-out than azelastine, with slower wash-out equating to longer duration of action. Duration of action for bivalent antagonists 56a-c and 57 is summarized Table 3. Antagonists 56a-c were all found to be longer-acting than azelastine, however, 57 had the same duration as azelastine.

The specificity profile of compounds **56a** and **56b** was evaluated by comparison to that of the clinical gold-standard, azelastine, and all three compounds were found to have a similar profile against α_{1A} and α_{1B} (Table 2). In addition, **56a** had low affinity for the human H₂ and H₄ receptors (pIC₅₀ 5.0). However, **56a** showed significant affinity (pIC₅₀ 7.3) for the hERG channel, having a very similar affinity to azelastine (pIC₅₀ 7.0) in the hERG dofetilide binding assay. Further assessment of the hERG effects of **56a** in an electrophysiology patch clamp confirmed the dofetilide displacement data. However, subsequent evaluation in rabbit hearts in vitro (SCREENIT model) suggested that the risk of **56a**-induced QT prolongation is low at therapeutically relevant concentrations.

The in vitro rate of metabolism of **56a** in human liver microsomes was moderate; the rate in human hepatocytes, however, was low. The rate of in vitro hepatic metabolism was generally

Table 4.	In	Vivo	Pharmacokinetic	Profile	of 56a	and	Azelastine	in Male	e CD	Rats	and	Male	Beagle	Do	gs
----------	----	------	-----------------	---------	--------	-----	------------	---------	------	------	-----	------	--------	----	----

compound dose (mg/kg) (route)	species	Cl (mL/min/kg) [range] % LBF	$V_{\rm ss}$ (L/kg) [range]	$t_{1/2}$ (h) [range]	<i>F</i> (%) [range]
56a 3.0 (po)/1.0 (iv) 56a 3.0 (po)/1.0 (iv)	rat $(n = 7)$ dog $(n = 3)$	30 [16-49] 35% 27 [23-34] 87%	3.9 [2.0-4.6] 22 [5.9-51]	2.2 [1.6-3.5] 9.4 [3.4-20]	4 [1-10] 19 [17-23]
azelastine 3.0 (po)/1.0 (iv)	rat $(n = 3)$	35 [28-40] 41%	1.8 [1.6-2.1]	1.0 [1.0-1.1]	7 [7-7]
azelastine 2.0 (po)/1.0 (iv)	dog (n = 1)	22	4.9	3.2	46

moderate for rat and dog and was in agreement with its clearance obtained in vivo. The pharmacokinetic profile of compound 56a was evaluated in rat and dog and summarized in Table 4. In the male CD rat, 56a had moderate in vivo clearance, and in the male Beagle dog, the clearance was high (35% and 87% of liver blood flow, respectively). Over a 24 h period, excretion of unchanged 56a in dog urine was <1% following both oral and intravenous administration, suggesting that elimination via renal clearance was low. The steady state volume of distribution $(V_{\rm ss})$ for 56a was moderate for the rat and high for the dog (3.9 and 22 L/kg)respectively). However, there was significant variability in the estimatation of V_{ss} for the dog. After intravenous administration, 56a had a moderate blood half-life in the rat and a long blood half-life in the dog (2.2 and 9.4 h, respectively). In the dog, the long half-life is volume driven and significant variability was observed in line with the variability observed with $V_{\rm ss}$. Systemic exposure following oral administration of 56a was very low in the rat (4%) and higher in the dog (19%). Following oral administration of 56a, low concentrations of the compound were detected in blood sampled from the hepatic portal vein (1-6%)of the dose) due to either low absorption and/or high first-pass metabolism. The bioavailability of azelastine in humans following intranasal administration was reported to be 40%.¹³ The rat and dog pharmacokinetic parameters for azelastine are included in Table 4 and clearly show that 56a had twice as long as azelastine's half-life and that the oral bioavailability of 56a was lower than that of azelastine's in both species.

To avoid sedation, it is necessary to have a low brain concentration of H_1 receptor antagonist following an intranasal therapeutic dose. Azelastine gave a brain—blood ratio of 7.5 (range 6.2–8.6) following intravenous infusion to the male CD rat. However, **56a** gave a brain—blood ratio of 0.6 (range 0.3–1.1). Therefore, the risk of engaging CNS related side-effects associated with either H_1 or H_3 would be very low considering the clinical dose and the low bioavailability of **56a**.

Several second-generation H₁ antagonists are substrates and modulators of hepatic cytochrome P450, in particular the subtype CYP3A4. Azelastine inhibits mainly CYP2D6 (IC₅₀ 1 μ M). For compounds designed for oral dosing, it is essential to avoid any drug-drug interactions that might lead to CYP450 activation and reduced safety in the clinic. **56a** showed an acceptable in vitro inhibition profile against CYP1A2, CYP2C9, and CYP2C19 (IC₅₀ >3 μ M), however, it was found to be a potent inhibitor of CYP2D6 (IC₅₀ 0.04 μ M) and CYP3A4 (IC₅₀ 0.3 μ M). As its oral bioavailability is low, and the intended clinical intranasal dose is predicted to be low, coadministration with **56a** is unlikely to result in significant clinical drug-drug interactions. Furthermore, there was no evidence of time-dependent P450 inhibition for the CYP3A4 and CYP2D6 isoforms.

In vivo pharmacology of **56a** and azelastine was studied in conscious guinea pigs in which nasal congestion was induced by intranasal histamine instillation and measured indirectly by plethysmography. Compound **56a** dosed by intranasal instillation of 0.1 and 1 mg/mL antagonized the histamine induced

response with a duration of up to 72 h, whereas azelastine antagonized the response with a duration of <24 h at 1 mg/mL. These data are consistent with potential clinical application of a once a day intranasal treatment for allergic rhinitis. Further pharmacological findings, such as the time-dependent increase in the binding affinity of **56a** and the in vivo inhibition of histamineinduced nasal airway resistance in guinea pigs, will be published elsewhere.⁴⁴

Various salts of **56a** were prepared, and two of these are noteworthy: the dihydrochloride and the 1,5-naphthalene disulfonate salts. The former was a highly soluble salt (>11 mg/mL in PBS at pH 5) and log *D* 2.86, whereas the latter was a crystal-line salt with low solubility (20 μ g/mL) and log *D* 3.0. For comparison, the solubility of azelastine hydrochloride salt was 144 μ g/mL in PBS (pH 7.4) and its log *D* 2.25.

4. CONCLUSION

A series of potent phthalazinone-based human H1H3 bivalent human histamine receptor antagonists were synthesized. Compounds 56a and 56b had H1 potency slightly lower than that of the clinical gold-standard, azelastine, and H₃ potency nearly 3 orders of magnitude greater than that of azelastine. In addition, **56a** and **56b** had longer duration of action in vitro on histamineinduced stimulation of human recombinant H₁ receptors than azelastine. Furthermore, following intranasal dosing, 56a is a potent inhibitor of histamine-induced nasal airway resistance in guinea pigs in vivo, with significantly longer duration of action than that of azelastine and efficacy at a 10 times lower concentration. The in vivo pharmacokinetic characteristics of 56a were indicative of limited systemic exposure from the swallowed portion of an intranasal dose, which should limit the potential for unwanted side effects. Brain penetration from iv dosing in the rat was lower than azelastine's, which coupled with the low clinical dose and low bioavailability, should limit the potential for engaging CNS related side effects associated with either H1 or H3 antagonism. CYP2D6 and CYP3A4 were inhibited by 56a, however, as both the intended clinical dose and oral bioavailability are predicted to be low, coadministration with 56a is unlikely to result in significant clinical drug-drug interactions. There was also no evidence of time-dependent P450 inhibition for either CYP3A4 or CYP2D6. On the basis of the above data, 56a was chosen for further progression as an intranasal treatment for allergic rhinitis.

5. EXPERIMENTAL SECTION

Organic solutions were dried over anhydrous Na_2SO_4 or MgSO₄. TLC was performed on Merck 0.25 mm Kieselgel 60 F_{254} plates. Products were visualized under UV light and/or by staining with aqueous KMnO₄ solution. LCMS analysis was conducted on a Supelcosil LCABZ+PLUS column (3.3 cm \times 4.6 mm i.d.) eluting with 0.1% formic acid and 0.01 M ammonium acetate in water (solvent A) and 0.05% formic acid and 5% water in acetonitrile (solvent B), using the following elution gradient 0.0–0.7 min 0% B, 0.7–4.2 min 100% B, 4.2-5.3 min 0% B, 5.3-5.5 min 0% B at a flow rate of 3 mL min⁻¹. The mass spectra were recorded on a Fisons VG Platform spectrometer using electrospray positive and negative mode (ES+ve and ES-ve). Column chromatography was performed on Flashmaster II. The Flashmaster II is an automated multiuser flash chromatography system, available from Argonaut Technologies Ltd., which utilizes disposable, normal phase, SPE cartridges (2-100 g). Mass-directed autopreparative HPLC (MDAP) was conducted on a Waters FractionLynx system comprising a Waters 600 pump with extended pump heads, Waters 2700 autosampler, Waters 996 diode array, and Gilson 202 fraction collector on a 10 cm \times 2.54 cm i.d. ABZ+ column, eluting with 0.1% formic acid in water (solvent A) and 0.1% formic acid in acetonitrile (solvent B), using an appropriate elution gradient over 15 min at a flow rate of 20 mL min and detecting at 200-320 nm at room temperature. Mass spectra were recorded on Micromass ZMD mass spectrometer using electrospray positive and negative mode, alternate scans. The software used was MassLynx 3.5 with OpenLynx and FractionLynx options. ¹H NMR spectra were recorded at 400 MHz. The chemical shifts are expressed in ppm relative to tetramethylsilane. High resolution positive ion mass spectra were acquired on a Micromass Q-Tof 2 hybrid quadrupole timeof-flight mass spectrometer. Optical rotations were measured with an Optical Activity AA100 digital polarimeter. Analytical chiral HPLC was conducted on Chiralpak column (250 mm \times 4.6 mm) eluting with 15% EtOH-heptane for 30 min at room temperature, flow rate 1 mL min⁻¹ injection volume 15 μ L, detecting at 215 nm. The purity of all compounds screened in the biological assays was examined by LCMS analysis and was found to be \geq 95%, unless otherwise specified. The purity of crystalline salts was additionally assessed by elemental microanalysis.

4-[(4-Chlorophenyl)methyl]-2-{2-[[4-(4-{[3-(hexahydro-1Hazepin-1-yl)propyl]oxy}phenyl)butyl](methyl)amino]ethyl}-1 (2H)-phthalazinone (55). A suspension of 4-[(4-chlorophenyl) methyl]-2-(2-{[4-(4-{[3-(hexahydro-1*H*-azepin-1-yl)propyl]oxy}phenyl) butyl]amino}ethyl)-1(2H)-phthalazinone (54) (16 mg, 0.027 mmol) in formaldehyde (37 wt % in water, 2 mL) and formic acid (0.20 mL) was heated at 100 °C with stirring for 40 min. After cooling, the mixture was concentrated in vacuo. The residue was then heated on a steam bath, under high vacuum for 2 h, to give 55 (11 mg, 66%) without further purification: LCMS RT = 2.47 min, 95%, ES+ve m/z 615 $[M + H]^+$ and 308/309 $[M/2 + H]^+$. ¹H NMR δ (CD₃OD) 8.37–8.33 (1H, m), 7.90-7.85 (1H, m), 7.84-7.76 (2H, m), 7.28 (2H, d, J = 8 Hz), 7.23 (2H, d, J = 8 Hz), 6.91 (2H, d, J = 8.5 Hz), 6.72 (2H, d, J = 8.5 Hz), 4.36 (2H, t, J = 6.5 Hz), 4.29 (2H, s), 3.94 (2H, t, J = 6 Hz), 2.85 (2H, t, J)I = 6.5 Hz), 2.83–2.73 (6H, m), 2.45–2.38 (4H, m), 2.30 (3H, s), 2.01-1.92 (2H, m), 1.76-1.60 (8H, m), 1.48-1.38 (4H, m). HRMS ES+ve *m*/*z*: calcd for C₃₇H₄₈ClN₄O₂, 615.3466; found, 615.3489.

4-[(4-Chlorophenyl)methyl]-2-({(2R)-1-[4-(4-{[3-(hexahydro-1*H*-azepin-1-yl)propyl]oxy}phenyl)butyl]-2-pyrrolidinyl} methyl)-1(2H)-phthalazinone (56a) Free Base. A mixture of 14 (1.017 g, 2.87 mmol), 43 (1.115 g, 2.91 mmol), and sodium bicarbonate (474 mg, 5.64 mmol) in MeCN (50 mL) was heated at 80 °C with stirring for 5 days under a nitrogen atmosphere. The cooled reaction mixture was partitioned between water and EtOAc. The aqueous layer was washed with further EtOAc ($\times 2$). The combined organic extracts were dried (MgSO₄) and concentrated in vacuo. The residue (1.35 g)was dissolved in DMF-TFA (2:1, 15 mL) and purified by preparative HPLC, using a Kromasil C8 column (28 cm \times 5 cm), eluting with a gradient of 5-45% (MeCN containing 0.25% TFA)-(0.25% TFA in water) over 40 min, followed by holding the final solvent ratio for a further 15 min. The relevant fractions were combined and concentrated in vacuo to leave an aqueous solution. This was applied to an Amberchrom CG-161 M column (25 cm \times 2.5 cm), and the column was washed with water to remove excess TFA and eluted with MeCN to afford the product as the trifluoroacetate salt. This was redissolved in

MeCN and applied to a SCX cartridge (20 g), preconditioned with MeOH then MeCN, and eluting with MeCN, followed by a solution of 10% aqueous 0.88 ammonia in MeCN. The appropriate fractions were concentrated under reduced pressure to give **56a** (651 mg, 35%): LCMS RT = 2.52 min, ES+ve m/z 641 [M + H]⁺ and 321/322 [M/2 + H]⁺. ¹H NMR (DMSO- d_6) δ 8.38 (1H, dd, J = 7.7, 1.6 Hz), 7.93 (1H, m), 7.86 (1H, m), 7.82 (1H, m), 7.30 (4H, m), 7.03 (2H, d, J = 8.5 Hz), 6.80 (2H, d, J = 8.5 Hz), 4.36 (1H, m), 4.33 (2H, s), 4.14 (1H, dd, J = 13.1, 8.0 Hz), 3.98 (2H, t, J = 6.1 Hz), 3.14 (1H, m), 3.03 (1H, dd, J = 7.8, 4.5 Hz), 2.84 (1H, m), 2.75 (6H, m), 2.50 (2H, t, J = 6.9 Hz), 2.31 (2H, m), 1.97 (2H, m), 1.82 (4H, m), 1.68 (8H, m), 1.55 (4H, m).

4-[(4-Chlorophenyl)methyl]-2-({(2R)-1-[4-(4-{[3-(hexahydro-1*H*-azepin-1-yl)propyl]oxy}phenyl)butyl]-2-pyrrolidinyl} methyl)-1(2H)-phthalazinone, (56a)-1,5-Naphthalene Disulfonate Monohydrate Salt. Free base 56a (400 mg, 0.62 mmol) was dissolved in methanol (4.44 mL). A solution of 1,5-naphthalene disulfonic acid (232 mg, 0.80 mmol) in methanol (1 mL) was added, and the resulting gummy solution was heated. Small amounts of solid began to form, and on cooling a solid precipitated. The slurry was stirred at room temperature for approximately 1 h, and methanol (2 mL) was added to mobilize the slurry, which was heated and cooled again and left to stir for a further hour. The solid was isolated by filtration and dried in vacuo at 40 °C to give 56a-1,5-naphthalenedisulfonate salt (465 mg, 73%): mp (DSC) 234-240 °C; $[\alpha]_D^{20}$ +8.0 (c 1.05 in DMSO). ¹H NMR $(DMSO-d_6) \delta 9.10 (2H, br), 8.86 (2H, d, J = 9 Hz), 8.31 (1H, br d, J = 9$ J = 7 Hz), 8.00–7.84 (5H, m), 7.43–7.33 (6H, m), 7.07 (2H, d, J = 9 Hz), 6.82 (2H, m), 4.55 (2H, d, J = 5 Hz), 4.31 (2H, m), 3.96 (2H, t, J = 6 Hz), 3.85 (1H, m), 3.62 (1H, m), 3.53-3.27 (9H, m),3.26-3.19 (2H, m), 3.19-3.03 (4H, m), 2.22-1.43 (18H, m). Found: C, 61.8; H, 6.2; N, 5.8; S, 6.8; Cl, 3.6. C₃₉H₄₉ClN₄O₂·C₁₀H₈O₆S₂ requires C, 62.1; H, 6.3; N, 5.9; S, 6.8; Cl, 3.7%

4-[(4-Chlorophenyl)methyl]-2-({(2R)-1-[4-(4-{[3-(hexahydro-1*H*-azepin-1-yl)propyl] oxy}phenyl)butyl]-2-pyrrolidinyl} methyl)-1(2H)-phthalazinone, (56a)-Dihydrochloride. Free base 56a (3.85 g, 6.0 mmol) was dissolved in MeOH (100 mL), and 2 M hydrochloric acid (12 mL, 24 mmol) was added. The solution was then evaporated under reduced pressure, and the residue was dissolved in MeOH (50 mL) and re-evaporated. The addition of MeOH and evaporation was repeated three times, and the residue was dried in vacuo to give $\mathbf{56a} \cdot \mathbf{2} \mathrm{HCl}$ (4.3 g, 100%). $^1\mathrm{H}$ NMR (DMSO- $d_6)$ δ 10.60 (1H, br s), 10.49 (1H, br s), 8.30 (1H, dd, J = 7.5, 1.5 Hz), 7.96 (1H, d, J = 7.5 Hz), 7.93-7.88 (1H, m), 7.89-7.84 (1H, m), 7.38 (2H, d, J = 8.5 Hz), 7.34 (2H, d, I = 8.5 Hz), 7.09 (2H, d, I = 8.5 Hz), 6.84 (2H, d, I = 8.5Hz), 4.62 (1H, dd, J = 14, 4.5 Hz), 4.55 (1H, dd, J = 14, 7 Hz), 4.37 (1H, d, J = 16.5 Hz), 4.33 (1H, d, J = 16.5 Hz), 4.00 (2H, t, J = 6 Hz), 3.85-3.77 (1H, m), 3.64-3.55 (1H, m), 3.46-3.31 (3H, m), 3.22-3.15 (2H, m), 3.14–3.02 (4H, m), 2.53–2.47 (2H, m), 2.23–2.07 (4H, m), 1.99-1.49 (14H, m).

2-({(2R)-1-[4-(4-{[3-(Hexahydro-1*H***-azepin-1-yl)propyl]oxy} phenyl)butyl]-2-pyrrolidinyl}methyl)-4-{[4-(methyloxy)phenyl] methyl}-1(2***H***)-phthalazinone (56b) diformate. Was prepared by a procedure similar to that described for 56a substituting 14 with 33 LCMS RT = 2.37 min, 95%, ES+ve** *m/z* **637 (M + H)⁺, 319 (M/2 + H)⁺. ¹H NMR \delta (CD₃OD) 8.48 (2H, br s), 8.40–8.35 (1H, m), 7.98 (1H, m), 7.90–7.80 (2H, m), 7.22 (2H, d,** *J* **= 9 Hz), 7.06 (2H, d,** *J* **= 9 Hz), 6.86–6.80 (4H, m), 4.58 (2H, m), 4.28 (2H, s), 4.03 (2H, t,** *J* **= 6 Hz), 3.88–3.80 (1H, m), 3.72 (3H, s), 3.66–3.58 (1H, m), 3.40–3.32 (5H, m), 3.11–2.95 (2H, m), 2.53 (2H, t,** *J* **= 7 Hz), 2.30–2.16 (4H, m), 2.11–1.88 (8H, m), 1.78–1.57 (8H, m). HRMS ES+ve** *m/z***: calcd for C₄₀H₅₃N₄O₃, 637.4118; found, 637.4125**

2-({(2R)-1-[4-(4-{[3-(Hexahydro-1*H*-azepin-1-yl)propyl]oxy} phenyl)butyl]-2-pyrrolidinyl}methyl)-4-[(4-hydroxyphenyl) methyl]-1(2*H*)-phthalazinone (56c). A solution of 56b diformate (100 mg, 0.13 mmol) in DCM (10 mL) was cooled in an ice-bath under nitrogen and then treated with boron tribromide solution in hexanes (1M, 0.3 mL), followed by another portion (0.3 mL) after 2 h. The mixture stood at room temperature for a total of 2 days and 4 h, and then the solvents were removed under reduced pressure. The residue was dissolved in MeOH–DMSO (1:1, 2 mL) and purified by MDAP to give 18 mg, which was repurified by MDAP to give **56c** (13 mg, 14%) LCMS RT = 2.37 min, 92%, ES+ve *m*/*z* 623 (M + H)⁺, 312 (M/2 + H)⁺. ¹H NMR δ (CD₃OD) 8.42 (2H, br s), 8.40–8.37 (1H, m), 8.00 (1H, m), 7.90–7.81 (2H, m), 7.12 (2H, d, *J* = 8 Hz), 7.07 (2H, d, *J* = 9 Hz), 6.82 (2H, d, *J* = 9 Hz), 6.60 (2H, m), 4.24 (2H, s), 4.02 (2H, t, *J* = 6 Hz), 3.45–3.30 (5H, m), 3.20–3.00 (2H, m), 3.11–2.95 (2H, m), 2.54 (2H, t, *J* = 7 Hz), 2.33–2.16 (4H, m), 2.13–1.88 (8H, m), 1.78–1.58 (8H, m).

4-[(4-Chlorophenyl)methyl]-2-({(2R)-1-[5-(4-{[3-(hexahydro-1*H*-azepin-1-yl)propyl]oxy}phenyl)pentyl]-2-pyrrolidinyl} methyl)-1(2H)-phthalazinone (57). 5-(4-{[3-(Hexahydro-1Hazepin-1-yl)propyl]oxy}phenyl)pentyl methanesulfonate (44) (142 mg, 0.36 mmol) was stirred with 14 (126 mg, 0.36 mmol) in MeCN (10 mL) at 80 $^{\circ}\mathrm{C}$ under nitrogen containing sodium bicarbonate (60 mg, 0.72 mmol) for six days when reaction appeared almost complete. The mixture was evaporated to dryness, and the residue in DCM was loaded onto a 20 g silica cartridge which had been preconditioned with DCM. The cartridge was eluted with DCM-EtOH-0.88 aq ammonia solution (200:8:1) and then (100:8:1) to give impure product in three fractions (52, 74, and 25 mg). The 74 and 25 mg portions were combined and loaded onto two 20 cm \times 20 cm silica preparative plates (1 mm thick layer), which were developed twice in DCM-EtOH-0.88 aq ammonia solution (100:8:1). The main band was taken off and eluted to give 57 (50 mg, 21%). LCMS RT = 2.58 min, 100%, ES+ve m/z 655 $[M + H]^+$, ES+ve m/z 329 $\left[1/2M+H\right]^{+}\!\!\!.^{1}\!H\,NMR\,(CDCl_{3})\,8.48\!-\!8.43\,(1H,m),7.72\!-\!7.62\,(3H,m),7.72\!-\!7.$ m), 7.26 (2H, d, J = 8 Hz), 7.20 (2H, d, J = 8 Hz), 7.07 (2H, d, J = 8 Hz), 6.81 (2H, d, J = 8 Hz), 4.43 (1H, dd, J = 4, 13 Hz), 4.25 (2H, s), 4.07 (1H, dd, J = 9, 13 Hz), 4.00 (2H, t, J = 6 Hz), 3.22–3.16 (3H, m), 3.02–2.93 (2H, m), 2.93–2.73 (4H, m), 2.52 (2H, t, J = 7.5 Hz), 2.40–2.29 (1H, m), 2.27-2.18 (1H, m), 2.09-1.98 (2H, m), 1.90-1.68 (8H, m), 1.67-1.53(8H, m), 1.42-1.25 (2H, m). HRMS ES+ve *m*/*z*: calcd for C40H52ClN4O2, 655.3779; found, 655.3792.

4-[(4-Chlorophenyl)methyl]-2-({(2R)-1-[4-(4-{[3-(hexahydro-1H-azepin-1-yl)propyl]oxy}phenyl)butyl]-2-pyrrolidinyl} methyl)-1(2H)-phthalazinone (56a) from 63. (Scheme 12) To a solution of $4\left[(4-\text{chlorophenyl})\text{methyl}\right]-2-\left\{\left[(2R)-1-(4-\{4-(3-\text{chloropropyl}))\right]\right\}$ oxy]phenyl}butyl)-2-pyrrolidinyl]methyl-1(2H)-phthalazinone (63) (20 g, 34.6 mmol) in 2-butanone (200 mL) under nitrogen was added potassium iodide (11.5 g, 69.2 mmol), potassium carbonate (9.6 g, 69.2 mmol), and hexamethylene imine (7.8 mL, 69.2 mmol). The reaction mixture was heated at reflux for 41 h. The solid was removed by filtration and washed with 2-butanone (2 \times 100 mL). The combined filtrate and washings were evaporated in vacuo, and the residue was dissolved in MeOH-DMSO (1:1; 30 mL). The solution was applied to two C18 reverse phase cartridges (330 g) and eluted using a gradient of 0-50% (MeCN containing 0.05% TFA)-(water containing 0.05% TFA) over 12 CV. The required fractions were evaporated in vacuo, and the residue was dissolved in MeOH. The solution was applied to four amino propyl cartridges (70 g) and eluted with MeOH. The required fractions were evaporated in vacuo to afford 56a (10.74 g, 48%): LCMS RT = 2.67 min, ES+ve m/z 641/643 $[M + H]^+$. Anal. Chiral HPLC RT = 7.9 min, 100%.

4-[(4-Chlorophenyl)methyl]-2-({(2S)-1-[4-(4-{[3-(hexahydro-1H-azepin-1-yl)propyl]oxy}phenyl)butyl]-2-pyrrolidinyl} methyl)-1(2H)-phthalazinone (58). Compound 58 Was prepared from 4-[(4-chlorophenyl)methyl]-2-{[(2S)-1-(4-{4-[(3-chloropropyl) oxy]phenyl}butyl)-2-pyrrolidinyl]methyl}-1(2H)-phthalazinone (S-enantiomer of 63) by the procedure described above for 56a, yield (92 mg, 55%). LCMS and ¹H NMR same as for **51a**. Anal. Chiral HPLC RT = 7.9 min, 2.1% (*R*-isomer) and 10.38 min, 97.9% (*S*-isomer)

ASSOCIATED CONTENT

Supporting Information. Preparative details and spectroscopic data for compounds 3–5, 8, 9, 6, 14, 10a, 11a, 16, 18, 22–27, 20, 30–33, 10b–10d, 35–37, 10e–r, 38–41, 52, 53, 44, 46, 47, 48, 49, 43, 54, 60–63, (*S*)-enantiomers of 61–63, biological screens, table of LCMS purity and retention times, and microanalytical data on 56a-1,5-naphthalenedisulfonate salt, molecular modeling. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*Phone: (+44)1438 762883. Fax: (+44)1438 768302. E-mail: pan.a.procopiou@gsk.com.

ABBREVIATIONS USED

Fluo-4AM, 4-(6-acetoxymethoxy-2,7-difluoro-3-oxo-9-xanthenyl)-4'-methyl-2,2'-(ethylenedioxy)dianiline-N,N,N',N'-tetraacetic acid tetrakis(acetoxymethyl) ester; GTP- γ -S, guanosine-S'-[γ -thio]-triphosphate; TBTU, (O-benzotriazol-1-yl)-N,N,N',N'-tetramethyl-uronium tetrafluoroborate

REFERENCES

(1) Bousquet, J.; Van Cauwnberge, P.; Khaltaev, N. ARIA Workshop Group, World Health Organization. Allergic rhinitis and impact on asthma. J. Allergy Clin. Immunol. **2001**, 108(Suppl 5) S147–S336.

(2) Berger, W. E. Overview of allergic rhinitis. Ann. Allergy Asthma Immunol. 2003, 90, 7–12.

(3) Leynaert, B.; Neukirch, C.; Liard, R.; Bousquet, J.; Neukirch, F. Quality of life in allergic rhinitis and asthma. A population-based study of young adults. *Am. J. Respir. Crit. Care Med.* **2000**, *162*, 1391–1396.

(4) Bäumer, W.; Rossbach, K. Histamine as an immunomodulator. *JDDG, J. Germ. Soc. Derm.* **2010**, *8*, 495–504.

(5) Simons, F. E. R. H₁-antihistamines: more relevant than ever in the treatment of allergic disorders. *J. Allergy Clin. Immunol.* **2003**, *112* (Suppl 4), S42–S52.

(6) Gushchin, I. S. Inverse agonists of H_1 receptors as promising antiallergy agents. *Pharm. Chem. J.* **2010**, 44, 1–6.

(7) Ganellin, C. R. In *Pharmacology of Histamine Receptors*; Ganellin, C. R., Parsons, M. E., Eds.; Wright: Bristol, UK, 1982, pp 11–102.

(8) Sander, K.; Kottke, T.; Stark, H. Histamine H₃ receptor antagonists go to clinics. *Biol. Pharm. Bull.* **2008**, *31*, 2163–2181.

(9) Leurs, R.; Blandina, P.; Tedford, C.; Timmerman, H. In *The Histamine H3 Receptor; A Target for New Drugs*, 1st ed.; Leurs, R., Timmerman, H., Eds.; Elsevier: Amsterdam, 1998.

(10) Leurs, R.; Blandina, P.; Tedford, C.; Timmerman, H. Therapeutic potential of histamine H₃ receptor agonists and antagonists. *Trends Pharmacol. Sci.* **1998**, *19*, 177–183.

(11) Łażewska, D.; Kieć-Kononowicz, K. Recent advances in histamine H_3 receptor antagonists/inverse agonists. *Expert Opin. Ther. Pat.* **2010**, 20, 1147–1169.

(12) Bhatt, H. G.; Agrawal, Y. K.; Raval, H. G.; Manna, K.; Desai, P. R. Histamine H₄ receptor: a novel therapeutic target for immune and allergic responses. *Mini-Rev. Med. Chem.* **2010**, *10*, 1293–1308.

(13) Lehman, J. M.; Blaiss, M. S. Selecting the optimal oral antihistamine for patients with allergic rhinitis. *Drugs* **2006**, *66*, 2309–2319.

(14) Lee, C.; Corren, J. Review of azelastine nasal spray in the treatment of allergic and non-allergic rhinitis. *Expert Opin. Pharmacother.* **2007**, *8*, 701–709.

(15) Bernstein, J. A. Azelastine hydrochloride: a review of pharmacology, pharmacokinetics, clinical efficacy and tolerability. *Curr. Med. Res. Opin.* **200**7, 23, 2441–2452.

(16) Ishikawa, S.; Sperelakis, N. Histamine H_3 receptor-mediated inhibition of noradrenaline release in pig retina discs. *Arch. Pharmacol.* **1987**, 324, 497–501.

(17) Malinowska, B.; Schlicker, E. H_3 receptor-mediated inhibition of neurogenic vasopressor responses in the pithed rats. *Eur. J. Pharmacol.* **1991**, 205, 307–310.

(18) Hey, J. A.; Del Prado, M.; Egan, R. W.; Kreuter, W.; Chapman, R. W. Inhibition of sympathetic hypertensive responses in the guinea pig by prejunctional H₃-receptors. *Br. J. Pharmacol.* **1992**, *107*, 347–350.

(19) Hey, J. A.; Aslanian, R.; Bolser, D. C.; Chapman, R. W.; Egan, R. W.; Rizzo, C. A.; Shih, N.-Y.; Fernandez, X.; McLeod, R. L.; West, R.; Kreutner, W. Studies on the pharmacology of the novel histamine H₃ receptor agonist Sch 50971. *Arzneim. Forsch. Drug Res.* **1998**, *48*, 881–888.

(20) Molderings, G. J.; Weissenborn, G.; Schlicker, E.; Likungu, J.; Göthert, M. Inhibition of noradrenaline release from the sympathetic nerves of the human saphenous vein by presynaptic histamine H₃ receptors. *Naunyn-Schmiedeberg's Arch. Pharmacol.* **1992**, *346*, 46–50.

(21) Valentine, A. F.; Rizzo, C. A.; Rivelli, M. A.; Hey, J. A. Pharmacological characterization of histamine H_3 receptors in human saphenous vein and guinea pig ileum. *Eur. J. Pharmacol.* **1999**, *366*, 73–78.

(22) Varty, L. M.; Hey, J. A. Histamine H_3 receptor activation inhibits neurogenic sympathetic vasoconstriction in porcine nasal mucosa. *Eur. J. Pharmacol.* **2002**, 452, 339–345.

(23) Varty, L. M.; Gustafson, E.; Laverty, M.; Hey, J. A. Activation of Histamine H_3 receptors in human nasal mucosa inhibits sympathetic vasoconstriction. *Eur. J. Pharmacol.* **2004**, *484*, 83–89.

(24) McLeod, R. L.; Mingo, G. G.; Herczku, C.; DeGennaro-Culver, F.; Kreutner, W.; Egan, R. W.; Hey, J. A. Combined histamine H₁ and H₃ receptor blockade produces nasal decongestion in an experimental model of nasal congestion. *Am. J. Rhinol.* **1999**, *13*, 391–399.

(25) McLeod, R. L.; Rizzo, C. A.; West, R. E., Jr.; Aslanian, R.; McCormick, K.; Bryant, M.; Hsieh, Y.; Korfmacher, W.; Mingo, G. G.; Varty, L.; Williams, S. M.; Shih, N.-Y.; Egan, R. W.; Hey, J. A. Pharmacological characterization of the novel histamine H_3 -receptor antagonist N-(3,5-dichlorophenyl)-N'-[[4-(1H-imidazol-4-ylmethyl)phenyl]-

methyl]-urea (Sch 79687). J. Pharmacol. Exp. Ther. 2003, 305, 1037–1044.
(26) Beaton, G.; Moree, W. J. The expanding role of H₁ antihistamines: a patent survey of selective and dual activity compounds 2005–2010. Expert Opin. Ther. Pat. 2010, 20, 1197–1218.

(27) Taylor-Clark, T.; Sodha, R.; Warner, B.; Foreman, J. Histamine receptors that influence blockage of the normal human nasal airway. *Br. J. Pharmacol.* **2005**, *144*, 867–874.

(28) Aslanian, R.; wa Mutahi, M.; Shih, N.-Y.; Piwinski, J. J.; West, R.; Williams, S. M.; She, S.; Wu, R.-L; Hey, J. A. Identification of a dual histamine H_1/H_3 receptor ligand based on the H_1 antagonist chlorpheniramine. *Bioorg. Med. Chem. Lett.* **2003**, *13*, 1959–1961.

(29) Procopiou, P. A.; Ancliff, R. A.; Bamford, M. J.; Browning, C.; Connor, H.; Davies, S.; Fogden, Y. C.; Hodgson, S. T.; Holmes, D. S.; Looker, B. E.; Morriss, K. M. L.; Parr, C. A.; Pickup, E. A.; Sehmi, S. S.; White, G. V.; Watts, C. J.; Wilson, D. M.; Woodrow, M. D. 4-Acyl-1-(4aminoalkoxyphenyl)-2-ketopiperazines as a novel class of non-brainpenetrant histamine H₃ receptor antagonists. *J. Med. Chem.* **2007**, *50*, 6706–6717.

(30) Hodgson, S. T.; unpublished results.

(31) Casale, T. B. The interaction of azelastine with human lung histamine H₁, β , and muscarinic receptor-binding sites. *J. Allergy Clin. Immunol.* **1989**, 83, 771–776.

(32) Fleischhauer, I.; Kutscher, B.; Engel, J.; Achterrath-Tuckermann, U.; Borbe, H. O.; Schmidt, J.; Szelenyi, I.; Camuglia, G. Chirality of azelastin and flezelastine: investigation of their enantiomers. *Chirality* **1993**, *5*, 366–369.

(33) Vogelsang, D.; Scheffler, G.; Brock, N.; Lenke, D.; Vogelsang Schafer, U. Basically substituted benzyl phthalazone derivatives, acid salts thereof and process for the production thereof. U.S. Patent US3813384, 1974. (34) Scheffler, G.; Engel, J.; Kutscher, B.; Sheldrick, W. S.; Bell, P. Synthesis and X-ray structure analysis of azelastine. *Arch. Pharm.* **1988**, 321, 205–208.

(35) Engelbrecht, H. J.; Lenke, D.; Muller, H. Aminocarboxylic acid derivatives having antiallergic/antiasthmatic effect and a process for their preparation. German Patent DE1046625, 1958.

(36) Knaak, M.; Fleischhauer, I.; Charpentier, P.; Emig, P.; Kutscher, B.; Müller, A. Ring-rearrangement during the Mitsunobu alkylation of phthalazinones and indazolols. *Liebigs Ann.* **1996**, 1477–1482.

(37) De Camp Schuda, A.; Mazzocchi, P. H.; Fritz, G.; Morgan, T. A Short and Efficient Synthesis of 4,5-Disubstituted-1-pentenes. *Synthesis* **1986**, 309–312.

(38) Sullivan, E.; Tucker, E. M.; Dale, I. L. Measurement of $[Ca^{2+}]$ using the Fluorometric Imaging Plate Reader (FLIPR). *Methods Mol. Biol.* **1999**, *114*, 125–133.

(39) Shi, L.; Javitch, J. A. The binding site of aminergic G proteincoupled receptors: the transmembrane segments and second extracellular loop. *Annu. Rev. Pharmacol. Toxicol.* **2002**, *42*, 437–467.

(40) Lin, S. W.; Sakmar, T. P. Specific tryptophan UV-absorbance changes are probes of the transition of rhodopsin to its active state. *Biochemistry* **1996**, *35*, 11149–11159.

(41) Gore, P. M.; Hancock, A. P.; Hodgson, S. T.; Kindon, L. J.; Procopiou, P. A. 2-Substituted 4-benzylphthalazinone derivatives as histamine H1 and H3 antagonists. Patent WO 2007122156 A1 1 Nov 2007.

(42) Yi, C.-S.; Martinelli, L. C.; Blanton, C.; DeWitt, Jr. Synthesis of *N*-methyl-1-oxa-5-aza[10]paracyclophane: a conformationally restricted analog of phenoxypropylamines. *J. Org. Chem.* **1978**, *43*, 405–409.

(43) Strogryn, E. L. New synthesis of antimalarials related to 2-bromo-4,5-dimethoxy-*N*,*N*-bis(diethylaminoethyl)aniline. Terminal nitrogen modifications. *J. Med. Chem.* **1970**, *13*, 864–866.

(44) Slack, R. J.; Russell, L. J.; Hall, D. A.; Luttmann, M. A.; Ford, A. J.; Saunders, K. A.; Hodgson, S. T.; Connor, H. E.; Browning C.; Clark, K. L. Pharmacological characterisation of GSK1004723, a novel, long acting antagonist at histamine H_1 and H_3 receptors. *Br. J. Pharmacol.*, in press.